Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Ecol ; 32(14): 3989-4002, 2023 07.
Artigo em Inglês | MEDLINE | ID: covidwho-2326110

RESUMO

Understanding the immunogenetic basis of coronavirus (CoV) susceptibility in major pathogen reservoirs, such as bats, is central to inferring their zoonotic potential. Members of the cryptic Hipposideros bat species complex differ in CoV susceptibility, but the underlying mechanisms remain unclear. The genes of the major histocompatibility complex (MHC) are the best understood genetic basis of pathogen resistance, and differences in MHC diversity are one possible reason for asymmetrical infection patterns among closely related species. Here, we aimed to link asymmetries in observed CoV (CoV-229E, CoV-2B and CoV-2Bbasal) susceptibility to immunogenetic differences amongst four Hipposideros bat species. From the 2072 bats assigned to their respective species using the mtDNA cytochrome b gene, members of the most numerous and ubiquitous species, Hipposideros caffer D, were most infected with CoV-229E and SARS-related CoV-2B. Using a subset of 569 bats, we determined that much of the existent allelic and functional (i.e. supertype) MHC DRB class II diversity originated from common ancestry. One MHC supertype shared amongst all species, ST12, was consistently linked to susceptibility with CoV-229E, which is closely related to the common cold agent HCoV-229E, and infected bats and those carrying ST12 had a lower body condition. The same MHC supertype was connected to resistance to CoV-2B, and bats with ST12 were less likely be co-infected with CoV-229E and CoV-2B. Our work suggests a role of immunogenetics in determining CoV susceptibility in bats. We advocate for the preservation of functional genetic and species diversity in reservoirs as a means of mitigating the risk of disease spillover.


Assuntos
Quirópteros , Coronavirus Humano 229E , Infecções por Coronavirus , Coronavirus , Animais , Quirópteros/genética , Genes MHC da Classe II , Filogenia , Coronavirus/genética , Coronavirus Humano 229E/genética , Antígenos de Histocompatibilidade Classe II/genética
2.
Adv Exp Med Biol ; 1407: 133-151, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2286093

RESUMO

Seven coronaviruses have been identified that can infect humans, four of which usually cause mild symptoms, including HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1, three of which are lethal coronaviruses, named severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and severe acute respiratory syndrome coronavirus 2. Pseudotyped virus is an important tool in the field of human coronavirus research because it is safe, easy to prepare, easy to detect, and highly modifiable. In addition to the application of pseudotyped viruses in the study of virus infection mechanism, vaccine, and candidate antiviral drug or antibody evaluation and screening, pseudotyped viruses can also be used as an important platform for further application in the prediction of immunogenicity and antigenicity after virus mutation, cross-species transmission prediction, screening, and preparation of vaccine strains with better broad spectrum and antigenicity. Meanwhile, as clinical trials of various types of vaccines and post-clinical studies are also being carried out one after another, the establishment of a high-throughput and fully automated detection platform based on SARS-CoV-2 pseudotyped virus to further reduce the cost of detection and manual intervention and improve the efficiency of large-scale detection is also a demand for the development of SARS-CoV-2 pseudotyped virus.


Assuntos
COVID-19 , Coronavirus Humano 229E , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Pseudotipagem Viral , SARS-CoV-2/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavirus Humano 229E/genética
3.
Front Cell Infect Microbiol ; 12: 958634, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-2114014

RESUMO

Rationale: Human coronaviruses (HCoVs) seriously affect human health by causing respiratory diseases ranging from common colds to severe acute respiratory diseases. Immunophilins, including peptidyl-prolyl isomerases of the FK506-binding protein (FKBP) and the cyclophilin family, are promising targets for pharmaceutical inhibition of coronavirus replication, but cell-type specific effects have not been elucidated. FKBPs and cyclophilins bind the immunosuppressive drugs FK506 and cyclosporine A (CsA), respectively. Methods: Primary human bronchial epithelial cells (phBECs) were treated with CsA, Alisporivir (ALV), FK506, and FK506-derived non-immunosuppressive analogs and infected with HCoV-229E. RNA and protein were assessed by RT-qPCR and immunoblot analysis. Treatment with the same compounds was performed in hepatoma cells (Huh-7.5) infected with HCoV-229E expressing Renilla luciferase (HCoV-229E-RLuc) and the kidney cell line HEK293 transfected with a SARS-CoV-1 replicon expressing Renilla luciferase (SARS-CoV-1-RLuc), followed by quantification of luminescence as a measure of viral replication. Results: Both CsA and ALV robustly inhibited viral replication in all models; both compounds decreased HCoV-229E RNA in phBECs and reduced luminescence in HCoV-229E-RLuc-infected Huh7.5 and SARS-CoV-1-RLuc replicon-transfected HEK293. In contrast, FK506 showed inconsistent and less pronounced effects in phBECs while strongly affecting coronavirus replication in Huh-7.5 and HEK293. Two non-immunosuppressive FK506 analogs had no antiviral effect in any infection model. Conclusion: The immunophilin inhibitors CsA and ALV display robust anti-coronaviral properties in multiple infection models, including phBECs, reflecting a primary site of HCoV infection. In contrast, FK506 displayed cell-type specific effects, strongly affecting CoV replication in Huh7.5 and HEK293, but inconsistently and less pronounced in phBECs.


Assuntos
Coronavirus Humano 229E , Infecções por Coronavirus , Coronavirus , Coronavirus/genética , Coronavirus Humano 229E/genética , Infecções por Coronavirus/genética , Ciclofilinas , Ciclosporina/química , Ciclosporina/farmacologia , Ciclosporina/uso terapêutico , Células HEK293 , Humanos , Imunossupressores/farmacologia , Luciferases de Renilla , Preparações Farmacêuticas , RNA , Tacrolimo/química , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico , Proteínas de Ligação a Tacrolimo/farmacologia , Proteínas de Ligação a Tacrolimo/uso terapêutico
4.
Cell Rep ; 41(4): 111540, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: covidwho-2104500

RESUMO

The cellular fate after infection with human coronaviruses (HCoVs) is typically death. Previous data suggest, however, that the transcriptional state of an individual cell may sometimes allow additional outcomes of infection. Here, to probe the range of interactions a permissive cell type can have with a HCoV, we perform a CRISPR activation screen with HCoV-229E. The screen identified the transcription factor ZBTB7A, which strongly promotes cell survival after infection. Rather than suppressing viral infection, ZBTB7A upregulation allows the virus to induce a persistent infection and homeostatic state with the cell. We also find that control of oxidative stress is a primary driver of cellular survival during HCoV-229E infection. These data illustrate that, in addition to the nature of the infecting virus and the type of cell that it encounters, the cellular gene expression profile prior to infection can affect the eventual fate.


Assuntos
Coronavirus Humano 229E , Humanos , Coronavirus Humano 229E/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Fatores de Transcrição/genética , Homeostase
5.
Virus Res ; 321: 198925, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: covidwho-2031740

RESUMO

Human coronaviruses (HCoVs) are important human pathogens, as exemplified by the current SARS-CoV-2 pandemic. While the ability of type I interferons (IFNs) to limit coronavirus replication has been established, the ability of double-stranded (ds)RNA, a potent IFN inducer, to inhibit coronavirus replication when conjugated to a nanoparticle is largely unexplored. Additionally, the number of IFN competent cell lines that can be used to study coronaviruses in vitro are limited. In the present study, we show that poly inosinic: poly cytidylic acid (pIC), when conjugated to a phytoglycogen nanoparticle (pIC+NDX) is able to protect IFN-competent human lung fibroblasts (HEL-299 cells) from infection with different HCoV species. HEL-299 was found to be permissive to HCoV-229E, -OC43 and MERS-CoV-GFP but not to HCoV-NL63 or SARS-CoV-2. Further investigation revealed that HEL-299 does not contain the required ACE2 receptor to enable propagation of both HCoV-NL63 and SARS-CoV-2. Following 24h exposure, pIC+NDX was observed to stimulate a significant, prolonged increase in antiviral gene expression (IFNß, CXCL10 and ISG15) when compared to both NDX alone and pIC alone. This antiviral response translated into complete protection against virus production, for 4 days or 7 days post treatment with HCoV-229E or -OC43 when either pre-treated for 6h or 24h respectively. Moreover, the pIC+NDX combination also provided complete protection for 2d post infection when HEL-299 cells were infected with MERS-CoV-GFP following a 24h pretreatment with pIC+NDX. The significance of this study is two-fold. Firstly, it was revealed that HEL-299 cells can effectively be used as an IFN-competent model system for in vitro analysis of MERS-CoV. Secondly, pIC+NDX acts as a powerful inducer of type I IFNs in HEL-299, to levels that provide complete protection against coronavirus replication. This suggests an exciting and novel area of investigation for antiviral therapies that utilize innate immune stimulants. The results of this study will help to expand the range of available tools scientists have to investigate, and thus further understand, human coronaviruses.


Assuntos
COVID-19 , Coronavirus Humano 229E , Coronavirus Humano NL63 , Interferon Tipo I , Coronavírus da Síndrome Respiratória do Oriente Médio , Nanopartículas , Enzima de Conversão de Angiotensina 2 , Antivirais/farmacologia , Coronavirus Humano 229E/genética , Monofosfato de Citidina , Humanos , RNA , SARS-CoV-2
6.
EBioMedicine ; 81: 104132, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: covidwho-1996118

RESUMO

BACKGROUND: Human seasonal coronaviruses usually cause mild upper-respiratory tract infection, but severe complications can occur in specific populations. Research into seasonal coronaviruses is limited and robust experimental models are largely lacking. This study aims to establish human airway organoids (hAOs)-based systems for seasonal coronavirus infection and to demonstrate their applications in studying virus-host interactions and therapeutic development. METHODS: The infections of seasonal coronaviruses 229E, OC43 and NL63 in 3D cultured hAOs with undifferentiated or differentiated phenotypes were tested. The kinetics of virus replication and production was profiled at 33 °C and 37 °C. Genome-wide transcriptome analysis by RNA sequencing was performed in hAOs under various conditions. The antiviral activity of molnupiravir and remdesivir, two approved medications for treating COVID19, was tested. FINDINGS: HAOs efficiently support the replication and infectious virus production of seasonal coronaviruses 229E, OC43 and NL63. Interestingly, seasonal coronaviruses replicate much more efficiently at 33 °C compared to 37 °C, resulting in over 10-fold higher levels of viral replication. Genome-wide transcriptomic analyses revealed distinct patterns of infection-triggered host responses at 33 °C compared to 37 °C temperature. Treatment of molnupiravir and remdesivir dose-dependently inhibited the replication of 229E, OC43 and NL63 in hAOs. INTERPRETATION: HAOs are capable of modeling 229E, OC43 and NL63 infections. The intriguing finding that lower temperature resembling that in the upper respiratory tract favors viral replication may help to better understand the pathogenesis and transmissibility of seasonal coronaviruses. HAOs-based innovative models shall facilitate the research and therapeutic development against seasonal coronavirus infections. FUNDING: This research is supported by funding of a VIDI grant (No. 91719300) from the Netherlands Organization for Scientific Research and the Dutch Cancer Society Young Investigator Grant (10140) to Q.P., and the ZonMw COVID project (114025011) from the Netherlands Organization for Health Research and Development to R.R.


Assuntos
Tratamento Farmacológico da COVID-19 , Coronavirus Humano 229E , Infecções Respiratórias , Antivirais/farmacologia , Antivirais/uso terapêutico , Coronavirus Humano 229E/genética , Humanos , Organoides/patologia , Sistema Respiratório/patologia , Infecções Respiratórias/patologia , Estações do Ano
7.
Viruses ; 14(5)2022 05 19.
Artigo em Inglês | MEDLINE | ID: covidwho-1903493

RESUMO

Four endemic coronaviruses infect humans and cause mild symptoms. Because previous analyses were based on a limited number of sequences and did not control for effects that affect molecular dating, we re-assessed the timing of endemic coronavirus emergence. After controlling for recombination, selective pressure, and molecular clock model, we obtained similar tMRCA (time to the most recent common ancestor) estimates for the four coronaviruses, ranging from 72 (HCoV-229E) to 54 (HCoV-NL63) years ago. The split times of HCoV-229E and HCoV-OC43 from camel alphacoronavirus and bovine coronavirus were dated ~268 and ~99 years ago. The split times of HCoV-HKU1 and HCoV-NL63 could not be calculated, as their zoonoticic sources are unknown. To compare the timing of coronavirus emergence to that of another respiratory virus, we recorded the occurrence of influenza pandemics since 1500. Although there is no clear relationship between pandemic occurrence and human population size, the frequency of influenza pandemics seems to intensify starting around 1700, which corresponds with the initial phase of exponential increase of human population and to the emergence of HCoV-229E. The frequency of flu pandemics in the 19th century also suggests that the concurrence of HCoV-OC43 emergence and the Russian flu pandemic may be due to chance.


Assuntos
Coronavirus Humano 229E , Infecções por Coronavirus , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Influenza Humana , Animais , Bovinos , Coronavirus Humano 229E/genética , Infecções por Coronavirus/epidemiologia , Coronavirus Humano OC43/genética , Humanos , Fatores de Tempo
8.
J Virol ; 96(4): e0195521, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: covidwho-1701123

RESUMO

The receptor binding domain (RBD) of the coronavirus spike protein (S) has been verified to be the main target for potent neutralizing antibodies (nAbs) in most coronaviruses, and the N-terminal domain (NTD) of some betacoronaviruses has also been indicated to induce nAbs. For alphacoronavirus HCoV-229E, its RBD has been shown to have neutralizing epitopes, and these epitopes could change over time. However, whether neutralizing epitopes exist on the NTD and whether these epitopes change like those of the RBD are still unknown. Here, we verified that neutralizing epitopes exist on the NTD of HCoV-229E. Furthermore, we characterized an NTD targeting nAb 5H10, which could neutralize both pseudotyped and authentic HCoV-229E VR740 in vitro. Epitope mapping indicated that 5H10 targeted motif E1 (147-167 aa) and identified F159 as critical for 5H10 binding. More importantly, our results revealed that motif E1 was highly conserved among clinical isolates except for F159. Further data proved that mutations at position 159 gradually appeared over time and could completely abolish the neutralizing ability of 5H10, supporting the notion that position 159 may be under selective pressure during the human epidemic. In addition, we also found that contemporary clinical serum has a stronger binding capacity for the NTD of contemporary strains than historic strains, proving that the epitope on the NTD could change over time. In summary, these findings define a novel neutralizing epitope on the NTD of HCoV-229E S and provide a theoretical basis for the design of vaccines against HCoV-229E or related coronaviruses. IMPORTANCE Characterization of the neutralizing epitope of the spike (S) protein, the major invasion protein of coronaviruses, can help us better understand the evolutionary characteristics of these viruses and promote vaccine development. To date, the neutralizing epitope distribution of alphacoronaviruses is not well known. Here, we identified a neutralizing antibody that targeted the N-terminal domain (NTD) of the alphacoronavirus HCoV-229E S protein. Epitope mapping revealed a novel epitope that was not previously discovered in HCoV-229E. Further studies identified an important residue, F159. Mutations that gradually appeared over time at this site abolished the neutralizing ability of 5H10, indicating that selective pressure occurred at this position in the spread of HCoV-229E. Furthermore, we found that the epitopes within the NTD also changed over time. Taken together, our findings defined a novel neutralizing epitope and highlighted the role of the NTD in the future prevention and control of HCoV-229E or related coronaviruses.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Coronavirus Humano 229E , Infecções por Coronavirus , Epitopos , Glicoproteína da Espícula de Coronavírus , Motivos de Aminoácidos , Animais , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/imunologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Epitopos/genética , Epitopos/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
10.
Virol J ; 18(1): 166, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: covidwho-1533268

RESUMO

The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and more recently, the independent evolution of multiple SARS-CoV-2 variants has generated renewed interest in virus evolution and cross-species transmission. While all known human coronaviruses (HCoVs) are speculated to have originated in animals, very little is known about their evolutionary history and factors that enable some CoVs to co-exist with humans as low pathogenic and endemic infections (HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1), while others, such as SARS-CoV, MERS-CoV and SARS-CoV-2 have evolved to cause severe disease. In this review, we highlight the origins of all known HCoVs and map positively selected for mutations within HCoV proteins to discuss the evolutionary trajectory of SARS-CoV-2. Furthermore, we discuss emerging mutations within SARS-CoV-2 and variants of concern (VOC), along with highlighting the demonstrated or speculated impact of these mutations on virus transmission, pathogenicity, and neutralization by natural or vaccine-mediated immunity.


Assuntos
Vacinas contra COVID-19 , COVID-19/virologia , SARS-CoV-2/genética , Animais , COVID-19/transmissão , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/imunologia , Coronavirus Humano 229E/patogenicidade , Coronavirus Humano NL63/genética , Coronavirus Humano NL63/imunologia , Coronavirus Humano NL63/patogenicidade , Coronavirus Humano OC43/genética , Coronavirus Humano OC43/imunologia , Coronavirus Humano OC43/patogenicidade , Humanos , Imunidade , Mutação , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade
11.
PLoS Comput Biol ; 17(11): e1009560, 2021 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1523396

RESUMO

Severe acute respiratory coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is of zoonotic origin. Evolutionary analyses assessing whether coronaviruses similar to SARS-CoV-2 infected ancestral species of modern-day animal hosts could be useful in identifying additional reservoirs of potentially dangerous coronaviruses. We reasoned that if a clade of species has been repeatedly exposed to a virus, then their proteins relevant for viral entry may exhibit adaptations that affect host susceptibility or response. We perform comparative analyses across the mammalian phylogeny of angiotensin-converting enzyme 2 (ACE2), the cellular receptor for SARS-CoV-2, in order to uncover evidence for selection acting at its binding interface with the SARS-CoV-2 spike protein. We uncover that in rodents there is evidence for adaptive amino acid substitutions at positions comprising the ACE2-spike interaction interface, whereas the variation within ACE2 proteins in primates and some other mammalian clades is not consistent with evolutionary adaptations. We also analyze aminopeptidase N (APN), the receptor for the human coronavirus 229E, a virus that causes the common cold, and find evidence for adaptation in primates. Altogether, our results suggest that the rodent and primate lineages may have had ancient exposures to viruses similar to SARS-CoV-2 and HCoV-229E, respectively.


Assuntos
COVID-19/genética , COVID-19/virologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , SARS-CoV-2/genética , Adaptação Fisiológica/genética , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/fisiologia , Animais , Antígenos CD13/genética , Antígenos CD13/fisiologia , Resfriado Comum/genética , Resfriado Comum/virologia , Biologia Computacional , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/fisiologia , Evolução Molecular , Genômica , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Especificidade de Hospedeiro/genética , Especificidade de Hospedeiro/fisiologia , Humanos , Mamíferos/genética , Mamíferos/virologia , Filogenia , Domínios e Motivos de Interação entre Proteínas/genética , Receptores Virais/genética , Receptores Virais/fisiologia , SARS-CoV-2/fisiologia , Seleção Genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/fisiologia , Internalização do Vírus
12.
Virology ; 564: 33-38, 2021 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1447220

RESUMO

Endemic seasonal coronaviruses cause morbidity and mortality in a subset of patients, but no specific treatment is available. Molnupiravir is a promising pipeline antiviral drug for treating SARS-CoV-2 infection potentially by targeting RNA-dependent RNA polymerase (RdRp). This study aims to evaluate the potential of repurposing molnupiravir for treating seasonal human coronavirus (HCoV) infections. Molecular docking revealed that the active form of molnupiravir, ß-D-N4-hydroxycytidine (NHC), has similar binding affinity to RdRp of SARS-CoV-2 and seasonal HCoV-NL63, HCoV-OC43 and HCoV-229E. In cell culture models, treatment of molnupiravir effectively inhibited viral replication and production of infectious viruses of the three seasonal coronaviruses. A time-of-drug-addition experiment indicates the specificity of molnupiravir in inhibiting viral components. Furthermore, combining molnupiravir with the protease inhibitor GC376 resulted in enhanced antiviral activity. Our findings highlight that the great potential of repurposing molnupiravir for treating seasonal coronavirus infected patients.


Assuntos
Coronavirus Humano 229E/genética , Infecções por Coronavirus/tratamento farmacológico , Coronavirus Humano NL63/genética , Coronavirus Humano OC43/genética , Citidina/análogos & derivados , Hidroxilaminas/farmacologia , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Resfriado Comum/tratamento farmacológico , Coronavirus Humano 229E/efeitos dos fármacos , Coronavirus Humano 229E/fisiologia , Coronavirus Humano NL63/efeitos dos fármacos , Coronavirus Humano NL63/fisiologia , Coronavirus Humano OC43/efeitos dos fármacos , Coronavirus Humano OC43/fisiologia , Citidina/farmacologia , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Pirrolidinas/farmacologia , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Estações do Ano , Ácidos Sulfônicos/farmacologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
13.
Sci Rep ; 11(1): 4499, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: covidwho-1383120

RESUMO

The purpose of the study was to compare clinical characteristics and mortality among adults infected with human coronaviruses (HCoV) 229E and OC43. We conducted a retrospective cohort study of adults (≥ 18 years) admitted to the ward of a university teaching hospital for suspected viral infection from October 2012 to December 2017. Multiplex real-time polymerase chain reaction (PCR) was used to test for respiratory viruses. Multivariate logistic regression was used to compare mortality among patients with HCoV 229E and HCoV OC43 infections. The main outcome was 30-day all-cause mortality. Of 8071 patients tested, 1689 were found to have a respiratory virus infection. Of these patients, 133 had HCoV infection, including 12 mixed infections, 44 HCoV 229E infections, and 77 HCoV OC43 infections. HCoV 229E infections peaked in January and February, while HCoV OC43 infections occurred throughout the year. The 30-day all-cause mortality was 25.0% among patients with HCoV 229E infection, and 9.1% among patients with HCoV OC43 infection (adjusted odds ratio: 3.58, 95% confidence interval: 1.19-10.75). Infections with HCoVs 229E and OC43 appear to have different seasonal patterns, and HCoV 229E might be more virulent than HCoV OC43.


Assuntos
Coronavirus Humano 229E/genética , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/virologia , Coronavirus Humano OC43/genética , Idoso , Coinfecção/mortalidade , Coinfecção/virologia , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real/métodos , Infecções Respiratórias/mortalidade , Infecções Respiratórias/virologia , Estudos Retrospectivos
14.
Nat Commun ; 12(1): 3726, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: covidwho-1275922

RESUMO

High-throughput, high-accuracy detection of emerging viruses allows for the control of disease outbreaks. Currently, reverse transcription-polymerase chain reaction (RT-PCR) is currently the most-widely used technology to diagnose the presence of SARS-CoV-2. However, RT-PCR requires the extraction of viral RNA from clinical specimens to obtain high sensitivity. Here, we report a method for detecting novel coronaviruses with high sensitivity by using nanopores together with artificial intelligence, a relatively simple procedure that does not require RNA extraction. Our final platform, which we call the artificially intelligent nanopore, consists of machine learning software on a server, a portable high-speed and high-precision current measuring instrument, and scalable, cost-effective semiconducting nanopore modules. We show that artificially intelligent nanopores are successful in accurately identifying four types of coronaviruses similar in size, HCoV-229E, SARS-CoV, MERS-CoV, and SARS-CoV-2. Detection of SARS-CoV-2 in saliva specimen is achieved with a sensitivity of 90% and specificity of 96% with a 5-minute measurement.


Assuntos
Inteligência Artificial , Teste de Ácido Nucleico para COVID-19/métodos , Aprendizado de Máquina , Nanoporos , Teste de Ácido Nucleico para COVID-19/instrumentação , Coronavirus Humano 229E/genética , Desenho de Equipamento/economia , Humanos , Limite de Detecção , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Nanopartículas/química , Reação em Cadeia da Polimerase , SARS-CoV-2/genética , Saliva/virologia , Sensibilidade e Especificidade , Software
15.
Viruses ; 13(6)2021 06 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1259626

RESUMO

Epithelial characteristics underlying the differential susceptibility of chronic asthma to SARS-CoV-2 (COVID-19) and other viral infections are currently unclear. By revisiting transcriptomic data from patients with Th2 low versus Th2 high asthma, as well as mild, moderate, and severe asthmatics, we characterized the changes in expression of human coronavirus and influenza viral entry genes relative to sex, airway location, and disease endotype. We found sexual dimorphism in the expression of SARS-CoV-2-related genes ACE2, TMPRSS2, TMPRSS4, and SLC6A19. ACE2 receptor downregulation occurred specifically in females in Th2 high asthma, while proteases broadly assisting coronavirus and influenza viral entry, TMPRSS2, and TMPRSS4, were highly upregulated in both sexes. Overall, changes in SARS-CoV-2-related gene expression were specific to the Th2 high molecular endotype of asthma and different by asthma severity and airway location. The downregulation of ACE2 (COVID-19, SARS) and ANPEP (HCoV-229E) viral receptors wascorrelated with loss of club and ciliated cells in Th2 high asthma. Meanwhile, the increase in DPP4 (MERS-CoV), ST3GAL4, and ST6GAL1 (influenza) was associated with increased goblet and basal activated cells. Overall, this study elucidates sex, airway location, disease endotype, and changes in epithelial heterogeneity as potential factors underlying asthmatic susceptibility, or lack thereof, to SARS-CoV-2.


Assuntos
Asma/imunologia , COVID-19/imunologia , Infecções por Coronavirus/imunologia , Células Epiteliais/virologia , Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Influenza Humana/imunologia , Índice de Gravidade de Doença , Asma/genética , Asma/virologia , COVID-19/genética , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/imunologia , Infecções por Coronavirus/genética , Células Epiteliais/classificação , Feminino , Perfilação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Influenza Humana/genética , Masculino , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Orthomyxoviridae/genética , Orthomyxoviridae/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Caracteres Sexuais
16.
Virol J ; 18(1): 89, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: covidwho-1209064

RESUMO

BACKGROUND: A novel coronavirus (SARS-CoV-2) emerging has put global public health institutes on high alert. Little is known about the epidemiology and clinical characteristics of human coronaviruses infections in relation to infections with other respiratory viruses. METHODS: From February 2017 to December 2019, 3660 respiratory samples submitted to Zhejiang Children Hospital with acute respiratory symptoms were tested for four human coronaviruses RNA by a novel two-tube multiplex reverse transcription polymerase chain reaction assays. Samples were also screened for the occurrence of SARS-CoV-2 by reverse transcription-PCR analysis. RESULTS: Coronavirus RNAs were detected in 144 (3.93%) specimens: HCoV-HKU1 in 38 specimens, HCoV-NL63 in 62 specimens, HCoV-OC43 in 38 specimens and HCoV-229E in 8 specimens. Genomes for SARS-CoV-2 were absent in all specimens by RT-PCR analysis during the study period. The majority of HCoV infections occurred during fall months. No significant differences in gender, sample type, year were seen across species. 37.5 to 52.6% of coronaviruses detected were in specimens testing positive for other respiratory viruses. Phylogenic analysis identified that Zhejiang coronaviruses belong to multiple lineages of the coronaviruses circulating in other countries and areas. CONCLUSION: Common HCoVs may have annual peaks of circulation in fall months in the Zhejiang province, China. Genetic relatedness to the coronaviruses in other regions suggests further surveillance on human coronaviruses in clinical samples are clearly needed to understand their patterns of activity and role in the emergence of novel coronaviruses.


Assuntos
COVID-19/diagnóstico , Reação em Cadeia da Polimerase Multiplex/métodos , Infecções Respiratórias/virologia , SARS-CoV-2/genética , Adolescente , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , COVID-19/complicações , COVID-19/genética , COVID-19/fisiopatologia , Criança , Pré-Escolar , China/epidemiologia , Coronavirus/genética , Coronavirus/isolamento & purificação , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/isolamento & purificação , Coronavirus Humano NL63/genética , Coronavirus Humano NL63/isolamento & purificação , Coronavirus Humano OC43/genética , Coronavirus Humano OC43/isolamento & purificação , Feminino , Hospitalização , Humanos , Lactente , Recém-Nascido , Masculino , Filogenia , Infecções Respiratórias/complicações , Infecções Respiratórias/etiologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética
17.
Viruses ; 13(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1184510

RESUMO

Coronaviruses (CoV) are widely distributed pathogens of human and animals and can cause mild or severe respiratory and gastrointestinal disease. Antigenic and genetic similarity of some CoVs within the Betacoronavirus genus is evident. Therefore, for the first time in Slovenia, we investigated the genetic diversity of partial 390-nucleotides of RNA-dependent-RNA polymerase gene (RdRp) for 66 human (HCoV) and 24 bovine CoV (BCoV) positive samples, collected between 2010 and 2016 from human patients and cattle with respiratory disease. The characterized CoV strains belong to four different clusters, in three separate human clusters HCoV-HKU1 (n = 34), HCoV-OC43 (n = 31) and HCoV 229E (n = 1) and bovine grouping only as BCoVs (n = 24). BCoVs from cattle and HCoV-OC43 were genetically the most closely related and share 96.4-97.1% nucleotide and 96.9-98.5% amino acid identity.


Assuntos
Doenças dos Bovinos/virologia , Coronavirus/classificação , Coronavirus/genética , Animais , Bovinos , Doenças dos Bovinos/transmissão , Coronavirus Humano 229E/genética , Infecções por Coronavirus/transmissão , Coronavirus Humano OC43/genética , Coronavirus Bovino/genética , Feminino , Variação Genética , Humanos , Masculino , Eslovênia
18.
PLoS Pathog ; 17(4): e1009453, 2021 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1172889

RESUMO

There is intense interest in antibody immunity to coronaviruses. However, it is unknown if coronaviruses evolve to escape such immunity, and if so, how rapidly. Here we address this question by characterizing the historical evolution of human coronavirus 229E. We identify human sera from the 1980s and 1990s that have neutralizing titers against contemporaneous 229E that are comparable to the anti-SARS-CoV-2 titers induced by SARS-CoV-2 infection or vaccination. We test these sera against 229E strains isolated after sera collection, and find that neutralizing titers are lower against these "future" viruses. In some cases, sera that neutralize contemporaneous 229E viral strains with titers >1:100 do not detectably neutralize strains isolated 8-17 years later. The decreased neutralization of "future" viruses is due to antigenic evolution of the viral spike, especially in the receptor-binding domain. If these results extrapolate to other coronaviruses, then it may be advisable to periodically update SARS-CoV-2 vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/imunologia , Evasão da Resposta Imune , Humanos , SARS-CoV-2/genética , SARS-CoV-2/imunologia
19.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: covidwho-1171752

RESUMO

Recent studies have shown T cell cross-recognition of SARS-CoV-2 and common cold coronavirus spike proteins. However, the effect of SARS-CoV-2 vaccines on T cell responses to common cold coronaviruses (CCCs) remains unknown. In this study, we analyzed CD4+ T cell responses to spike peptides from SARS-CoV-2 and 3 CCCs (HCoV-229E, HCoV-NL63, and HCoV-OC43) before and after study participants received Pfizer-BioNTech (BNT162b2) or Moderna (mRNA-1273) mRNA-based COVID-19 vaccines. Vaccine recipients showed broad T cell responses to the SARS-CoV-2 spike protein, and we identified 23 distinct targeted peptides in 9 participants, including 1 peptide that was targeted in 6 individuals. Only 4 of these 23 targeted peptides would potentially be affected by mutations in the UK (B.1.1.7) and South African (B.1.351) variants, and CD4+ T cells from vaccine recipients recognized the 2 variant spike proteins as effectively as they recognized the spike protein from the ancestral virus. Interestingly, we observed a 3-fold increase in the CD4+ T cell responses to HCoV-NL63 spike peptides after vaccination. Our results suggest that T cell responses elicited or enhanced by SARS-CoV-2 mRNA vaccines may be able to control SARS-CoV-2 variants and lead to cross-protection against some endemic coronaviruses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vacinas contra COVID-19/imunologia , Coronavirus Humano 229E , Coronavirus Humano NL63 , Coronavirus Humano OC43 , RNA Mensageiro , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Adulto , Vacina BNT162 , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/imunologia , Coronavirus Humano NL63/genética , Coronavirus Humano NL63/imunologia , Coronavirus Humano OC43/genética , Coronavirus Humano OC43/imunologia , Reações Cruzadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
20.
Nat Genet ; 53(4): 435-444, 2021 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1123140

RESUMO

The ongoing COVID-19 pandemic has caused a global economic and health crisis. To identify host factors essential for coronavirus infection, we performed genome-wide functional genetic screens with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human coronavirus 229E. These screens uncovered virus-specific as well as shared host factors, including TMEM41B and PI3K type 3. We discovered that SARS-CoV-2 requires the lysosomal protein TMEM106B to infect human cell lines and primary lung cells. TMEM106B overexpression enhanced SARS-CoV-2 infection as well as pseudovirus infection, suggesting a role in viral entry. Furthermore, single-cell RNA-sequencing of airway cells from patients with COVID-19 demonstrated that TMEM106B expression correlates with SARS-CoV-2 infection. The present study uncovered a collection of coronavirus host factors that may be exploited to develop drugs against SARS-CoV-2 infection or future zoonotic coronavirus outbreaks.


Assuntos
COVID-19/genética , Sistemas CRISPR-Cas , Genoma Humano/genética , Estudo de Associação Genômica Ampla/métodos , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Líquido da Lavagem Broncoalveolar/citologia , COVID-19/epidemiologia , COVID-19/virologia , Linhagem Celular Tumoral , Células Cultivadas , Coronavirus Humano 229E/genética , Epidemias , Células Epiteliais/virologia , Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Provírus/fisiologia , SARS-CoV-2/fisiologia , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA